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High Electric Demand Days (HEDD):
A “peak” problem

* Heat Waves
* Power Systems

— Reliability is compromised

— Cost of electricity is high: expensive peaking generators
* Environment

— High ozone air pollution

— Double threats to public health: heat and air pollution



New York City

Station. a'h Max r-::y I'::y J1uun Jzuun le.: n Jzuan Jzugn Jauun J:.Il .11 3 I .11 : I .11 lf I
Babylon Suffolk 5150-02 | 0.083 0.079 0.095 | 0.086 0.078 | 0.083 0.082
Holtsville Suffolk 5151-10 | 0.079 0.092 | 0.080 0.076 0.079
Riverhead Suffolk 5155-01 | 0.083 0.084 | 0.083 0.078 0.088
CCNY New York 7093-25 | 0.073 0.077
Pfizer Lab Bronx 7094-10 | 0.075 0.076 | 0.077 0.080
Queens College 2 | Queens 7096-15 | 0.082 0.077 | 0.080 | 0.080 | 0D.083 0.082 0.082 | 0.086
Susan Wagner Richmond 7097-01 | 0.077 0.077 0.076 | 0.082 | 0.078 | D.084
White Flains Westchester | 5902-04 | 0.072 0.080 | 0.086
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Get Creative!

USA TODAY (July 4, 2012):
"In New York City, police
officers drive through
streets using loudspeakers
asking people to turn down
their air conditioning
during the day. The power
grid can't handle it."




MOU among Northeastern States to reduce HEDD

emissions
State NOx Percent Reduction from
(tons per day) HEDD Units
CT 117 25%
DE 7.3 20%
MD 23.5 32%
NJ 19.8 28%
NY 50.8 27%
PA 21.8 32%
Total 134.9

e “Conflict” between power systems reliability and air quality

e Currently the mechanisms for achieving the reductions proposed by
air quality regulators emphasize on emission controls of peaking
units.

* Con Edison’s review indicated that peaking units play important roles
in reliability, black start, load pocket support, and voltage support.

* A 2009 NYISO analysis showed that proposed HEDD programs may
lead to “exceedances of reliability criteria”.



Our Vision for HEDD

* Supply side: incorporating air quality forecasting into wholesale day-ahead
and real-time electricity markets;

— dispatching generators taking into account the time- and location-
dependent contributions of their NOx emissions to ozone formation

e Demand side:

— Dynamic prices of electricity linked to wholesale LBMP to incentivize
load reduction from critical peak hours

— Deployment and smart management of building thermal storage to
shift loads from critical peak hours

— incentivize the off- peak charging of electric vehicles as those vehicles
penetrate into the automotive market, shifting daytime mobile
emissions to nighttime point source emissions

* Hypothesis: the overall costs to the society in achieving those benefits will
be lower than acting on the power reliability and air quality separately.



Major Achievements in Year One

Emission modeling (in collaboration with NYISO)
Dynamic pricing modeling (in collaboration with NYISO)
Thermal storage modeling
Assessment of emission impacts from

— Dynamic pricing

— Thermal storage

— Challenges



Dynamic Pricing (with NYISO)
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Load Responses

e Critical hours

— Spread over 90/50/80 highest load hours for NYC, Long
Island and the rest of the New York State, depending on
market conditions and customer responsiveness

— Capacity costs applied only during critical peak hours
e Elasticity

— For residential: from multi-year pilot in Northern lllinois.
More recent data can be incorporated.

— For Commercial and Industrial: non-experimental
programs in the eastern US.

— Applied for Critical Peak period price ratio



Load
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Evaluating Impacts
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Emission Predictions: Preprocessing

600+ generator data sets (from EPA)

Filtering: Find minimum generation via greedy deterministic
search
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Emission Predictions: 2-Step Regression

* Automated 2" order regression analysis
* Brute force greedy search to add components

, , AP AP\*  |AP|
Bo+ BiP + BaP? + BoAP + BAP + BlAP| + Bg—+ By (=) + B + BoPAP
APAP AP|AP|
+ B1oPIAP| + B11 APIAP| + Bry —5—+ Bz —

e Step 1: Heat Input vs. Gross Load Regression

* Step 2: Emissions vs. Heat Input Regression
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Emission Predictions: R2 Statistics

* Define an acceptable R? parameter and record the regression

for each generator

Heat Input vs. Gross Load

Step 1: 73% of datasets with R% > 0.9
90% of datasets with R% > 0.7

Histogram of R-Squared Values for Heat Input vs Gross Load Regressions
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Emissions vs. Heat Input

Step 2: 40% of datasets with R2> 0.9
64% of datasets with R2> 0.7

Histogram of R-Squared Values for NOx Emission vs Heat Input Regressions
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Deriving the efficiency of thermal storage from
single building level modeling
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Optimize System Costs

Use heuristic methods to allocate cooling loads in order
reduce system costs

Day-ahead market Stage

minACDAMJt,ACRTM,t{LMPDAM (PDAM: |APDAM|) X Psyspam +

E[LMPRTM (ﬁRTM: |EERTM D X (ﬁsys,RTM - Psys,DAM)]}

subject to

Real-time market Stage
0 = ICEcpyp s +Lacpyy + = MaxChill Vvt € (0,..,T;)

0= ICECRTMI + LQCRTM,L“ = MaxCth YVt € (0,..,T1) minACRTthDAM (EDAM; |EDAM |) % Esys DAM +

0 = ICEdpsp + = MaxDischargeRate Vt e (0,..,T;) — — _ —

0 < ICEdgpy ; < MaxDischargeRate Vt € (0,..,T,) [LMPras (Prrass |APrru|) X (Poys.rar — Psys.pam)]}
0= EILQ(ICECDAMI — ICEdpay +) = StoreCapacity subject to

0= EILOUCECRTMI — ICEdgyyy +) = StoreCapacity 0 < ICEe © Lac < MaxChill Vt€ (0,..,T,)
—= RTM .t RTM,t = prerdl

ICEdpp ¢+ + Lacpay : = CoolingLoad, Vt € (0,..,T;) 0 < ICEdgry + = MaxDischargeRate Vt € (0,..,T;)
ICEdgrp ¢ + Lacgry . = CoolingLoad, Vt € (0,..,T;)

0 < X" ((ICEcgry . — ICEdgpy +)/6 < StoreCapacity

ICEdgry + + Lacgry + = CoolingLoad,  Vt € (0,..,T;)



Aggregated thermal storage to reduce
system costs in NYCA
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Linking power and environmental systems

Electricity markets

r

Load Forecast

Dispatch modeling

{

Emission Forecast

>{ Air Quality Forecast

Weather Forecast




Demand-side resources and Extreme
Weathers

 Hot temperature: High demand
* Drought: low hydro
e Stagnant condition: Low wind outputs



Heat & Sunlight = Ozone
pad” ozone is not emitted directly
created by chemical reactions
1VOCs in the presence

Emissions from
industrial facilities and electric

utilities, motor vehicle exhaust,

gasoline vapors, and chemical solvents are

some of the major sources of oxides of nitrogen
(NOx) and volatile organic compounds (VOC). )



NO, Emissions Versus Peak Electricity Demand
on Ozone and Non-Ozone Exceedance Days

NJ-NYC-CT-RI-SE MA
(June 1 - September 15, 2002)
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HEDD Emissions

 HEDD unit operations are a significant contributor to NOx
emissions on high ozone days;

 The NOx cap and trade program, although effective
generally has, by its very nature, had limited success in
reducing emissions from HEDD units on HEDDs;

* EPA and State workgroups estimate that using a cap and
trade mechanism alone to provide sufficient financial
incentives to cause the clean up of HEDD units would
need an 18:1 retirement ratio and such a strategy would
consume 74% of all available CAIR allowances for 12
HEDD days



MOU among Northeastern States to reduce HEDD

emissions
State NOx Percent Reduction from
(tons per day) HEDD Units
CT 117 25%
DE 7.3 20%
MD 23.5 32%
NJ 19.8 28%
NY 50.8 27%
PA 21.8 32%
Total 134.9

e “Conflict” between power systems reliability and air quality

e Currently the mechanisms for achieving the reductions proposed by
air quality regulators emphasize on emission controls of peaking
units.

* Con Edison’s review indicated that peaking units play important roles
in reliability, black start, load pocket support, and voltage support.

* A 2009 NYISO analysis showed that proposed HEDD programs may
lead to “exceedances of reliability criteria”.



How can we achieve co-benefits and What
need to be considered?

* Electricity markets
— Critical to ensuring system reliability
— Require air quality information in advance

e Supply and demand

— Supply: How can we effective dispatch generators to
achieve the co-benefits?

— Demand: A lot of opportunities on the demand-side
 Demand response
* Dynamic pricing
* Price responsive demand



Our Vision for HEDD

* Supply side: incorporating air quality forecasting into wholesale day-ahead
and real-time electricity markets;

— dispatching generators taking into account the time- and location-
dependent contributions of their NOx emissions to ozone formation
(focus of the first year)

* Demand side: dynamic retail prices of electricity linked to wholesale LBMP

— incentivize load reduction and
inductive to ozone formation
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Envisioned Operational Mechanism

12:00 am

Forecasting (48 hr-ahead) of locational- Day-ahead Market
based damage functions for NOx emissions

from Hour 0 to 23 in the operating day

y

Day before the operating day

t 1

5:00 am 11:00 am
Bids (taking into account the Day-ahead schedules and LBMPs
damage functions) submitted (reflecting the damaging functions)
for day-ahead market posted from Hour 0 to 23 in the

2 Hr prior to the O.H.
Forecasting (24 hr-ahead with adjustment)
of locational-based damage functions for
NOx emissions for the operating hour

\

Real-time Market

Operating Hour (0.H)

1 1

75 min prior to the O.H. 15 min prior to the O.H.
Bids (taking into account the Dispatch signals and calculation
damage functions) submitted of real-time LBMPs (reflecting

for real-time market the damage function).




Tools

Power Systems
— SuperOPF model
— NPCC network and Eastern Interconnect network

Air Quality Forecasting
— National Air Quality Forecasting Capability (NAQFC): operational

— Decoupled direct method (DDM) to evaluate the contribution of
emissions from individual power plants efficiently

— NAQFC+DDM will forecast the time- and location-dependent (TLD)
NOx contributions to ozone formation, which are then employed to
quantify the TLD human health costs of NOx emissions

An very intensive computational problem integrating different
components!

We aim to make the proposed dynamic energy and environmental
dispatch operational to have an impact.



Point Sources of NOx Emissions in the U.S. and Canada
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